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Brain-inspired computing hardware aims to emulate the structure and 
working principles of the brain and could be used to address current 
limitations in artificial intelligence technologies. However, brain-inspired 
silicon chips are still limited in their ability to fully mimic brain function 
as most examples are built on digital electronic principles. Here we report 
an artificial intelligence hardware approach that uses adaptive reservoir 
computation of biological neural networks in a brain organoid. In this 
approach-which is termed Brainoware-computation is performed 
by sending and receiving information from the brain organoid using a 
high-density multielectrode array. By applying spatiotemporal electrical 
stimulation, nonlinear dynamics and fading memory properties are 
achieved, as well as unsupervised learning from training data by reshaping 
the organoid functional connectivity. We illustrate the practical potential 
of this technique by using it for speech recognition and nonlinear equation 
prediction in a reservoir computing framework. 

The recent success of artificial intelligence (Al) has been largely driven 
by the development o f  artificial neural networks (ANNs)', which pro-
cess large datasets using silicon computing chips2

•
1

. However, training 
ANNs on current Al computing hardware is energy intensive and time 
consuming'-'. The physical separation o f  data from data-processing 
units-known as the von Neumann bottleneck6

•
7 - is a key cause of  these 

issues. The slowing o f  Moore's law also places further limitations on 
current Al hardware•·•. Thus, alternative approaches for the develop-
ment o f  Al hardware are needed9

•
1 0

• 

cost through neuronal plasticity and neurogenesis13
•

14
, avoiding the 

large energy consumption of high-precision computing approaches 11-'2• 

The human brain fuses data storage and processes within biologi-
cal neural networks (BNNs)"·16

, naturally avoiding any von Neumann 
bottleneck issues. Inspired by BNNs, attempts have been made to 
develop high-efficiency and low-cost neuromorphic chips-using mem-
ristors, for example10

•
11

•
20 - that store previously experienced current 

or/and voltages in internal states and enable short-term memory11•23_ 

Such neuromorphicchips have been used forvariousapplications, for 
example, in computer vision''·" and speech recognition2

•·21• However, 
current neuromorphic chips can only partially mimic brain functions, 
and there isa need to improve their processing capability and account· 
ing for real-life uncertainty and improving energy efficiency. 

The human brain is a complex three-dimensional biological net-
work o f  about200 billion cells, which are linked to one another via 
hundreds o f  trillions of  nanometre-sized synapses11

•
1 2

• Its structure, 
function and efficiency could be a powerful source of  inspiration for 
thedevelopmentof Al hardware. In particular, a human brain typically 
expends about 20 watts, whereas current Al hardware consumes about 
8 million watts to drive a comparative ANN'. The brain can also effec-
tively process and learn information from noisy data at minimal training 

Brain organoidsare in vitro three-dimensional aggregates that are 
created through the self-organization and differentiation of human 
pluripotent stem cells and can become brain-like tissues that can reca-
pitulate aspects o f  a developing brain's structure and function 2• -31_ 
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Fig. I I Brainoware wi th  unsupervised learning for  A lcomput ing.  a, Schematic 
of an adaptive reservoir computing framework using Brainoware. b, Schemat.ic 
of the paradigm ofBrainoware setup that mounts a single brain organoid onto 
a high-density MEA for receiving inputs and sending outputs. c, Whole-mount 
immunostaining of cortical organoids showing complex three-di mensiona I 
neuronal networks with various brain cell identities (for example, mature 

In this Article, we report an Al hardware that harnesses the reservoir 
computation and unsupervised learning ability of organoid neural 
networks (ONNs) in a brain organoid. The approach-termed Brain-
oware-processes spatiotemporal information, and achieves unsu-
pervised learning, probably through the neuroplasticity of the brain 
organoid (Fig. la and Supplementary Fig. I). Compared with current 
two-dimensional (2D) in vitro neuronal cultures and neuromorphic 
chips (Supplementary Table 1), Brainoware could provide additional 
insights for Al computing because brain organoids can provide BNNs 
with complexity, connectivity, neuroplasticity and neurogenesis, as 
well as low energy consumption and fast learning. 

Brainoware with unsupervised learning for Al 
computing 
We constructed Brainoware by mounting a functional brain orga-
noid onto a high-density multielectrode array (MEA) (Fig. lb). The 
human brain organoid for Brainoware was characterized by various 
brain cell identities (for example, early stage and mature neurons, 
astrocytes and neuron progenitor cells), and early development of 
brain-like structures (for example, ventricular zones and subventricu-
lar zones) for the formation, function and maintenance of complex 

Nature Electronics 

d 

_ J  

I I 
I 

) 
Adaptive reservoir layer 

-• 
L - / .  I y ( t )  

- • / , / . '  , - •: -
: /Regression ----• 

Time 1 

I 
I •: _., 

Output layer 

Hypothesized learning curve of Brainoware 

Unsupervised ��arning by synaptic plasticity 

\ ... 
• 

Blocking synaptic plasticity 

0 
No organoid 

Training 

neuron, MAP2; astrocyte GFAP; neurons of early differentiation stage, Tujl; 
neural progenitor cells, SOX2). d, Schematic demonstrating the hypothesized, 
unsupervised learning ofBrainoware by reshaping the BNN during training, 
and the inhibition of unsupervised learning after synaptic plasticity is blocked. 
Scale bar, 100 µm. 

ONNs (Fig. le and Supplementary Fig. 2), as well as network electrical 
activity (Supplementary Fig. 3 and Supplementary Video 1). TheONNs 
received inputs via external electrical stimulation and sent outputs via 
evoked neural activity, offering a functional basis for Al computing. 
As a proof-of-concept application, we implemented Brainoware as a 
reservoir computing framework32

. In conventional reservoir computing 
hardware, the input signals can be mapped into higher-dimensional 
computational spaces through a reservoir, which is a 'black box' com-
prising the dynamics of a physical system. Given specific input signals, 
the output of this reservoir is used as features for a simple 'readout 
function' (for example, a linear or logistic regression model) to perform 
a computational task, for example, classification and time-series analy-
sis. Although conventional reservoir dynamics are fixed, the readout 
function is trained to map the featurevaluesgenerated by the reservoir 
to the desired labels of the data. Different from conventional reservoir 
computing hardware with a fixed physical reservoir, Brainoware uses 
a human brain organoid as 'an adaptive living reservoir' to conduct 
'unsupervised learning". The time-dependent inputs can be converted 
into spatiotemporal sequences of electric stimulation through an input 
layer, and then projected into high-dimensional computational spaces 
as ONNs via the adaptive living reservoir. The output signals, as neural 
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Fig. 2 I Reservoir computing hardware properties. a, Evoked response 
(raster plot and post-stimulation histogram) on a single bipolar voltage pulse 
stimulation (mean± standard error of the mean (s.e.m.), n = S stimulation trials). 
b, Representative evoked normalized firing on pulses with different pulse 
times (tp) and pulse voltages (v,) (mean± standard deviation, n = S stimulation 
trials; Supplementary Fig. S). The red fitting curve (a sigmoid function) 
indicates nonlinear activity, whereas the black dashed line marks spontaneous 

activities, can be effectively utilized via a readout function for various 
tasks (Fig. la and Supplementary Fig. I). Moreover, by training using 
the spatiotemporal sequences o f  electrical stimulation, Brainoware 
can improve its computing performance and demonstrate unsuper-
vised learning via the adaptive living reservoir. This is possible because 
Brainoware responds to the electric stimulations with changes in the 
functiona I connectivity of the organoids 33

•34 (Supplementary Fig. 4 and 
Supplementary Video 2), enabling the dynamic reshaping of ONNs. If 
the synaptic plasticity is blocked (for example, by K252A-a blocker for 
activity-dependent synaptic plasticity), the computing performance is 
maintained by Brainoware (but unsupervised learning o f  the adaptive 
reservoir halts) (Figs. l d  and 4d). In the following experiments, Brain-
aware was demonstrated to exhibit unique and critical properties o f  a 
physical reservoir and we successfully conduct some real-world tasks 
with limited training data at low energy and computing cost. 

Reservoir computing hardware properties 
Before applying Brainoware to reservoir computing tasks, we char-
acterized and demonstrated its basic implementation as a physical 
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activity. c, Representative evoked normalized firing before, after JOO msor 
after 300 ms from the end ofsingle·pulse stimulation (Supplementary Fig. 6), 
showing the fading dynamics. d, Representative memristor·like responses to 
a stream of pulses (v, = 200 mV, r, = 300 µs). e, Distinct raster plots evoked by 
two complementary spatial patterns (namely, Pl and P2) of stimulation pulses 
(v, = SOOmv.r. = 500 µs). 

reservoir. We tested the physical reservoir properties ofBrainoware 
such as nonlinear dynamics, fading memory (or short-term memory) 
and spatial information processingbycheckingthe responseofONNs 
to bipolar voltage pulse stimulations with different pulse times (r.) and 
voltages (11.). For example, as electrical stimulation pulses are applied 
to Brainoware, the evoked neuronal activity (raster plot) was recorded, 
and the post-stimulation histogram was calculated and plotted (Fig. 2a). 
We demonstrated that Brainoware exhibited a representative nonlin-
ear response to the pulse voltage (Fig. 2b and Supplementary Fig. 5). 
After applying a single voltage pulse stimulation ( tP ;,, 200 µs), the 
evoked mean normalized firing rate o f  Brainoware (over 200 ms 
post-stimulation) to the pulse voltage can be fitted with a sigmoid 
function, in accordance with the nonlinear activation function of ANNs. 
Although applying a single voltage pulse stimulation with short pulse 
tlmes (t. < 200 µs), the evoked normalized firing ofBrainoware with 
the same organoid was only around the baseline o f  its spontaneous 
activity. Next, we tested the fading memoryofBrainoware by applying 
pulses with different pulse times and voltages. The evoked normalized 
firingofBrainoware before and afterlOO or 300 ms from the end of 
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Fig. 31 Speech recognition. a, Workftow of performing a speech recognition 
task using Brainoware. b, Schematic showing that Brainoware with the naive 
organoid receives daily training from day O 102 with one epoch {whole Japanese 
vowel dataset) per half-day. c, Representative confusion matrix showing the 
speech recognition performance before and after training. d, Increase in speech 
recognition accuracy over training epochs (mean± s.e.m., n = 5 organoids, from 
three independent experiments). The three dashed lines represent the accuracy 
by chance {Chance), accuracy by a logistic regression algorithm (Regression) 

single-pulse stimulation was obtained (Fig. 2c and Supplementary 
Fig. 6). Pulses with longer duration and higher voltage were respon-
sible for stronger evoked response and slower relaxation dynamics. 
Importantly, the nonlinear response and fading dynamics of ONNs can 
be well controlled by precisely adjusting the stimulation parameters 
(Supplementary Fig. 7a). Moreover, we also demonstrated the combina-
tion of these two properties within Brainoware. After the application of 
four individual trains of pulses (u0 = 200 mV, t0 =300 µs), Brainoware 
showed both accumulation and decay of dynamic responses (Fig. 2d 
and Supplementary Fig. 7b). Multiple pulses at short intervals (SO ms) 
within a pulse train were responsible for the gradual increase in evoked 
responses and the delay of relaxation dynamics, in accordance with 
the dynamic response of a memristor-a typical reservoir computing 
hardware. Furthermore, we demonstrated the capability ofBrainoware 
to process spatial information. The spatial information was converted 
into spatial patterns of simulation pulses (u0 = 500 mV, t0 = 500 µs) such 
as two4 x 4 spatial patterns (namely, Pl and P2). The distinct raster plots 
ofBrainowarewith the same organoid were evoked by these two com-
plementary patterns and showed the active storage and gradual loss 
of different spatial information over time (Fig. 2e), indicating spatial 
information processing rather than stimulation artifacts. 

Speech recognition 
To apply Brainoware for performing real-world time-series tasks, we 
demonstrated speech recognition by distinguishing an individual 
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and accuracy by a standard reservoir computing algorithm called echo state 
network {ESN).e, Functional connectivity changes in the sameorganoid from 
days-2 to O (before training) and from days Oto 2 {during training), indicating 
the unsupervised learning of Brainoware from training. f, Quantification of 
connectivity changes {weakened, strengthened, new and pruned) before 
and during training (mean± s.e.m., n = 5 organoids, from three independent 
experiments; unpaired t·test, " P  = 0.0083, " P =  0.0029, .. 'P= 0.0008, 
, .. P= 0.00U; Supplementary Fig. 9). 

speaker's vowels from a speaker pool (Fig. 3a). A benchmark test of 
speech recognition was implemented using a Japanese vowel data-
base. Here 240 audio clips o f  isolated Japanese vowels (/a/ and /e/) 
pronounced by eight different malespeakers (as one epoch) were con-
verted into spatiotemporal sequences of stimulation bipolar pulses 
and applied to Brainoware. The evoked ONN activity (for example, 
raster plot) was recorded and fed into a logistic regression function 
for classification. After training the logistic regression algorithm and 
optimizing the stimulation (Supplementary Fig. 8), Brainoware could 
be applied to speech recognition. Brainoware, starting with a na'ive 
organoid, received training from days Oto 2 with one epoch every 
12 h (Fig. 3b). Before training, a representative confusion matrix was 
experimentally obtained (Fig. 3c, left), but only a low accuracy was 
reached atabout51.0 ± 7.8%. These results indicate that Brainoware may 
employ the pre-existing functional connectivity of the na'ive organoid 
to perform the speech recognition task (Supplementary Fig. 9). After 
training Brainowarewith thesameorganoid for fourtrainingepochs, 
another representative confusion matrix was experimentally obtained 
(Fig. 3c, right), and higher accuracy was achieved, at about 78.0 ± 5.2%, 
highlighting that Brainoware improved its performance o f  speech 
recognition by training. Moreover, Brainoware increased its accuracy 
of speech recognition over training epochs (Fig. 3d). These results 
indicate that the electrical stimulation during training may trigger 
the unsupervised learning ofBrainoware for improving computing 
performance by reshaping the functional connectivity of the organoid. 
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Fig. 41 Predicting a nonlinear chaotic equation. a, Work flow of predicting 
a Henon map. b, PredictedXvalues using Brainoware before (blue) and after 
training (red) versus ground trueXvalue (black). c, Predicted 2D maps using 
Brainoware before (blue) and after (red) training versus ground true2D map 
(black). d, Learning curves ofBrainoware over training epochs, where the red 
or blue curves show Brainoware with naiveorganoids ororganoids treated 
with a CaMKII blocker K252a (to block synaptic plasticity) before training 
(mean± s.e.m., n = 5 organoids, from three independent experiments; 
'P= 0.0259, . .  P=  0.007, ' " P =  0.0004). e, Learning activity ofBrainoware 

To test this, the functional connectivity changes in a na'ive organoid 
before training (days-2 toO) and the same organoid during training 
(days Oto 2) were separately measured (Fig. 3e and Supplementary 
Fig. 9). More tests also demonstrated that the trained organoids (during 
training) have significantly more connectivity changes (for example, 
weakened, strengthened, new and pruned conditions) than the na"ive 
organoids (before training) (Fig. 3f). These results indicate that training 
notably reshapes the functional connectivity of the organoid, possibly 
facilitating the unsupervised learning ability ofBrainoware. 

Predicting a nonlinear chaotic equation 
We further applied Brainoware to predict a Henon map, which is a typi-
cal nonlinear dynamic system with chaotic behaviour. This time-series 
task was implemented into Brainoware using a briefworktlow (Fig. 4a). 
A 2D Henon map was first converted into a one-dimensional (lD)decom-
position, converted into the spatiotemporal sequences of bipolar volt· 
age pulses, optimized using the delay· and place-encoding methods 
and then sent to the MEA electrodes for stimulating Brainoware (Sup· 
plementary Fig.10). Using a simple readout linear regression algorithm 
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under different conditions with the naive organoids (before training), 
organoids after training (after training), organoids treated with K252a during 
training (K252a + training) and without organoids (blank) (mean± s.e.m .. n = 5 
organoids, from three independent experiments;"'P= 0.001, " ' P =  0.0004, 
, ... p < 0.0001). f, Performance comparison ofBrainoware with linear regression, 
ANN with or without an LSTM unit and a standard reservoir computing algorithm 
(ESN). The number denotes the training epochs of each group (mean± s.e.m., 
n = S organoids, from three independent experiments; Supplementary Fig.11; 
'P= 0.013, " ' P =  0.0087). 

for decoding the neural activity o f  the organoid (Supplementary 
Fig.10), Brainoware harnessed its adaptive reservoir computation 
to  achieve unsupervised learning from the input spatiotemporal 
pulses and predict the Henon map. Experiments were conducted to 
predict the Henon map (X"" value) by feeding Brainoware with spa· 
tiotemporal pulses encoded with Xn value. The 1D decomposition 
(Fig.4b) and 2D displacement (Fig. 4c) o f  the predicted Henon maps 
were experimentally obtained from Brainoware with the same orga· 
noid before and after four training epochs (one epoch per day, and 
each epoch encoded with a Henon map dataset of200 data points). 
Here, compared with the theoretical output (ground truth; black), 
the after-training condition (red) showed better-predicted results 
than the before-training condition (blue). Next, the learning curves 
ofBrainoware to predict this nonlinear chaotic equation were meas· 
ured over epochs (Fig. 4d). The accuracy ofBrainoware in predicting 
the Xn., value was used to evaluate its learning ability to predict the 
Henon map. Interestingly, Brainoware increased the regression score 
(Supplementary Information provides the detailed calculation) from 
0.356 ± 0.071 (with the na"ive organoids) to 0.812 ± 0.043 (the same 
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organoids after four training epochs). Although treated with a calcium/ 
calmodulin-dependent protein kinase II (CaMKII) blocker, namely, 
K252a, to block activity-dependent synaptic plasticity", the nega-
tive control group only slightly improved their regression score from 
0.310 ± 0.072 to 0.385 ± 0.063 over the same training procedures. The 
results indicated that the learningactivityofBrainoware was depend· 
ent on neural plasticity. Furthermore, experiments were performed 
to measure the unsupervised learning activities ofBrainoware under 
different conditions (Fig. 4e). Only an MEA chip and culture medium 
(blank) were tested to have a regression score ofO, emphasizing that 
Brainowarecannot compute without the organoids. We further com-
pared Brainoware with representative machine learning algorithms 
such as ANN on predicting the Henon mapofthesamedata size(Fig.4f). 
Linear regression (decoding algorithm ofBrainoware) could barely 
predict this problem, showing an accuracy close to 0. Brainoware 
notebly outperformed ANN without a long short-term memory (LSTM) 
unit (Supplementary Fig.11). Brainoware (with 4 training epochs) 
showed slightly lower accuracy than ANN with LSTM (each with 50 
training epochs), decreasing the training times by >90%. 

Conclusions 
We have reported a class of reservoir computing hardware that har· 
nesses the computational power ofONNs. Human brain organoids 
have the ability to self-organize and form functional ONNs for the 
development of brain-inspired Al hardware. The ONNs may also have 
the necessary complexity and diversity to mimic a human brain, 
which could inspire the development o f  more sophisticated and 
human-like Al systems'•J7_ Due to the high plasticity and adaptability 
of organoids, Brainoware has the flexibility to change and reorgan· 
ize in response to electrical stimulation, highlighting its ability for 
adaptive reservoir computing. The approach may also naturally 
address the challenges regarding time and energy consumption 
and heat production o f  current Al hardware. We showed that our 
approach can exhibit physical reservoir properties such as nonlinear 
dynamics, fading memory and spatial information processing. We 
also implemented it in practical applications: speech recognition 
and nonlinear equation prediction. Furthermore, we showed that the 
approach can learn from training data by reshaping the functional 
connectivity ofONNs. 

There are several limitations and challenges with the current 
Brainoware approach. One technical challenge is the generation and 
maintenance of organoids. Despite the successful establishment of 
various protocols, current organoids still suffer from high hetero· 
geneity, low generation throughput, necrosis/hypoxia and various 
viabilities. Moreover, it is critical to properly maintain and support 
organoids to harvest their computational power. Recent engineering 
efforts focused on optimizing organoid differentiation and growth 
conditions, and manipulating their microenvironments may provide 
approaches for the high-throughput generation and maintenance of 
standardized organoids38Å 

The power consumption of the current Brainoware hardware is 
low, but the additional peripheral equipment required (such as CO2 
incubator and computer) still consume considerable power. In the 
future, and based on electronics developments and system integration, 
it should be possible to integrate customized systems for maintaining 
and interfacing of organoids with very low power consumption. Brain· 
oware uses tlatand rigid MEA electrodes for interfacing with organoids, 
which are only able to stimulate/record a small number of neurons on 
the organoid surface. Thus, there is a need to develop methods-such 
as brain-machine interfaces and soft electrodes39- 41- to interface the 
whole organoid with Al hardware and software"·". This should allow 
theexchangeofinformation, as well as the manipulation of their activ· 
ity, from a greaternumberof neurons. Another technical challenge is 
the management and analysis of data. The encoding and decoding of 
temporospatial information to and from Brainoware still needs to be 
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optimized through improvements in data interpretation, extraction 
and processing from multiple sources and modalities44

- 46• Moreover, 
large amounts of data may be generated by this new AI hardware, which 
could require the development of new algorithms and methods for 
analysing and visualizing the data. 

Methods 
Generation and characterization o f  organoids 
Cortical organoids were generated from human pluripotent stem cells 
following a protocol that we adapted from the reported protocols28 ·" . 

All the handling and culture of stem cells and organoids followed the 
guidelines of the WiCell Institute and Indiana University Biosafety 
Committee. Supplementary Information and Methods provide detailed 
protocols for the development and characterization of organoids. 

System setups 
The hardware used to assemble the system included a humidified incu· 
bator (Heracell VIOS 160i, Thermo Fisher) maintained at 37 °C and 5% 
CO2 for culturing and maintaining the organoid, a MaxOne MEA system 
(Maxwell) for interfacingtheorganoid and a personal computer to run 
Python (3.6.13) and Maxlive(22.2.4software by the MEA manufacturer) 
for implementingthe reservoir computing frame ofBrainoware. Sup· 
plementary Information and Methods provide detailed information 
on plating, stimulating and recording organoids. 

Software 
The software used to assemble the system included Maxlive for gener-
ating the stimulation sequence, giving stimulation and recording the 
evoked neuronal activity, and Python for extracting and processing of 
spikes, as well as feeding the processed signals into a readout function. 
Supplementary Information and Methods provide details about the 
computing framework. 

Reservoir computing framework 
Brainoware was implanted in a reservoir computing framework with 
three key components: an input layer, a reservoir layer and an output 
layer. The input layer converted information (image pattern, audio 
clips, time series and so on) into various spatiotemporal sequences of 
electrical stimulation pulses to the organoid (reservoir layer). Theorga-
noid (reservoir layer) received the input electrical stimulation (u(t)) 
and mapped to a high-dimensional computational space as the ONN. 
The neural activities representing the reservoir state were recorded by 
an MEA system and fed into a decoding function (for example, linear 
regression or logistic regression) tooutputy(t), as an output layer for 
classification, recognition, prediction and other applications. Sup· 
plementary Information and Methods provide detailed information 
on the encoding, decoding and implementing of applications (for 
example.audio recognition and Hen6n map equation). 

Statistical analysis 
The statistics comparing two sample groups were conducted using 
the Students' t·test. Statistical significance was denoted as follows: 
•p < 0.05, . .  p < 0.01, mp< 0.005, ••••p < 0.001. Due to the exploratory 
nature ofourexperiments, we did not use statistical methods to prede· 
termine the sample sizes, but our sample sizes are similar to previous 
reports2Å -33-3 4 in the field of brain organoids. 

Reporting summary 
Further information on research design is available in the Nature Port· 
folio Reporting Summary linked to this article. 

Data availability 
Source data are provided with this paper. All other data that support 
the findings of this study a re available from the corresponding author 
upon reasonable request. 
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